If it's not what You are looking for type in the equation solver your own equation and let us solve it.
730x+4380x^2=0
a = 4380; b = 730; c = 0;
Δ = b2-4ac
Δ = 7302-4·4380·0
Δ = 532900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{532900}=730$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(730)-730}{2*4380}=\frac{-1460}{8760} =-1/6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(730)+730}{2*4380}=\frac{0}{8760} =0 $
| (x+2)^2-3=1 | | 3/4n=1/8 | | 2(42-1.5y)+3y=84 | | 0=-4/7x+12 | | 1/6+b=1/3 | | f+4/1=−2/7 | | 4=12-c | | 1x(1x+1)=x^2+5 | | (-1/2)p=-16 | | 5x-1/3+6=10 | | 5x=3/2x+42 | | 7x+13=6x-9 | | 1.5x^2+x-1=0 | | 3x+4+3/2x+25=90 | | 1.96=4z | | 11-5(4a-2)=1 | | 9/2x=151 | | 14-x=21-3x | | 0.05x+0.08(100-x)=6.5 | | -0.5(3t-4)=0.5(2-4t) | | 4.9x^2+1.05x=2 | | B=x√2+3x√2-2x√2 | | 9.2(x+6.4)=-15 | | A=3x+7x-x | | 8x+3-2x-7=180 | | 8x+3=2x-7 | | x^2−12x=0 | | 8x2+6x+5=0 | | 2(x2-1)=X2+7 | | 6x+4=15x+13 | | 3(x2-1)=24 | | I+2q=11-3q |